

Nigerian Journal of Soil Science

Journal homepage:www.soilsjournalnigeria.com

Influence of forms of iron and manganese oxides on the physical and chemical properties of soils formed over mica-schist in a Northern Guinea Savanna, Nigeria

¹Kefas, P.K., *²Shobayo A.B., ³Ofem K.I., ¹Akwoga J.A., ⁴Asadu C.L.A., ⁴Ezeaku P.I.

¹Department of Agronomy, Faculty of Agriculture, Taraba State University, PMB 1167, Jalingo, Taraba State, Nigeria. ²Department of Soil Science, Faculty of Agriculture, Ahmadu Bello University, PMB 1044, Zaria, Kaduna State, Nigeria. ³Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife, Resources Management, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria.

⁴Department of Soil Science, Faculty of Agriculture, University of Nigeria, Nsukka, Enugu State, Nigeria.

ARTICLE INFO

Article history: Received August 10, 2020 Received in revised form September 8, 2020 Accepted June December, 2020 Available online March 22, 2021

Keywords:

Iron oxide Manganese oxide Mica-schist Norther guinea savannah Basement complex

Corresponding Author's E-mail Address:

abshobayo@yahoo.com +234 818 260 9577

https://doi.org/10.36265.njss.2021.310104

ISSN- Online 2736-1411

Print 2736-142X

© Publishing Realtime. All rights reserved.

1.0 Introduction

The northern guinea savanna is one of the most intensively farmed areas in Nigeria. Nearly 80 % of West African land surface is covered by savanna vegetation (Sanford et al., 1980). According to Jagtap (1995), FAO (1978) and Kassam et al. (1975), farmers' choice of the area may have been as a result of the favourable solar radiation during growing season, reliable and well distributed rainfall, and lower night temperatures that promote litter accumulation. Lithology has major influences on the properties of overlying soils and provides a starting material upon which other soil forming factors act to give rise to soil. It also influences the nature and properties of soil (Esu, 2010, Ibanga, 2006). Consequently, soils formed over a lithology have specific properties, support specific crops and result in a lithosequence of soils (Usul and Dengiz, 2010; Maniyunda, 2012). It is a major determinant of soils response to

ABSTRACT

Three forms of oxides of iron and manganese were evaluated on soils developed in mica-schist lithology within the basement complex formation of Taraba State, North-eastern Nigeria. The results from the three oxide forms namely; pyrophosphate extractable (Mn_p/Fe_p), oxalate extractable (Mn_{ox}/Fe_{ox}) and citratebicarbonate-dithionite extractable (Mn_d/Fe_d) examined were subjected to both descriptive and inferential statistics to analyse their trend and distribution in order to understand their influence on pedogenesis. Content of the three forms of manganese oxides were lower than those of the respective iron oxides (Mn_p: mean -100.44 mgkg⁻¹, Mn_{ox} : mean – 128.72 mgkg⁻¹, Mn_d : mean – 144.96 mgkg⁻¹ and Fe_p: mean – 1212.30 mgkg⁻¹, Fe_{ox}: mean – 1305.20 mgkg⁻¹, Fe_d: mean – 2518.00 mgkg⁻¹) at their corresponding horizons; and was attributed to the mineralogical constitution of geology of the study area. Content of organic matter (mean, 0.632 %) and organic carbon (mean, 0.366 %) were low (but highly significant - F =2502, $p = 216^{***}$) and was attributed to high mineralization rate caused by climate of study area (northern guinea savanna); thus, had proportional effect on the oxalate extractable Fe and Mn as they are organic bound. Also, a strong significant difference (F = 187.6, p = 7.777^{***}) between means of Mn_{ox} and Mn_p emphasized reciprocity in their pedogenic interaction. High content of Fe across the three oxide forms examined presupposes high plinthization on soils of the micaschist

management (Olaniyan *et al.*, 2011). Soils in the northern guinea savanna are mainly developed on the Basement Complex. The complex is made up of migmatite gneiss, schist, older granite and under formed acid dykes (Obaje, 2009) and mainly constitutes igneous and metamorphic rocks, and occupy 50 % of the Nigerian surface area (Ogezi, 1977).

Soils in the Nigerian guinea savanna are generally slightly acid, less leached, coarse textured and consist of sandy loam or loam over gravelly clay loam (Esu and Ojanuga, 1985) with lower clay content in the surface soil (Lawal *et al.* 2013) and are predominantly derived from crystalline Precambrian Basement Complex rocks. Soils of the savanna region are fragile (Salako, 2003) with large proportion of sand and low organic matter content (Adewale and Odoh, 2017) and are gravelly and shallow (Adeoye and Mohammed-Saleem, 1990., Salako *et al.*, 2002) in some parts with low nitrogen content (Salako *et al.*, 2002). Esu (2010) attributed the low organic matter in the surface soils of the Nigerian Savanna to the rapid rate of mineralization of organic matter and the high degree of sheet erosion as well as the use of grasses in the region for roofing and grazing. Maniyunda *et al.* (2013) attributed the moderate and high variability in soil properties in a lithose-quence in the area to land use, management and cultural practices.

Luvisols have been identified as the most common soils in Northern Guinea Savanna of Nigeria (Salako, 2003), while Ogungbile et al. (1999) classified similar soils as lithisols. However, Salami et al. (2011) described them as potentially fertile, while available P, organic matter, acidity and sand-silt components varied widely within the area. Similarly, textural and fertility variation were reported for the area by Okogun et al. (2004). Consequently, soil fertility decline among many factors was identified as the most remarkable for low yield among many factors (Salami et al., 2011., Olaniyan, 2015). In a related study, Babalola et al. (2019) reported a significant difference in texture between parent materials, indicating the relevance of lithosequences and their influence on soil. Albeit, the fertility status of soils is bound to change when lithology changes and most likely to affect the type of crops supported by the soil

The presence Fe-Mn concretions in the subsurface soils of the northern guinea savanna of Nigeria have been observed by Babalola et al. (2019). Oxides, hydroxides and oxy-hydroxides of Fe, Mn, Al and Ti are together referred to as sesquioxides (Maniyunda et al., 2015). They are commonly present as amorphous, crystalline and organic complexes. Pedogenesis as well as soil physical and chemical properties are influenced by the nature, amount and occurrence of these oxides in soils (Schertmann and Taylor, 1989., Jelic et al., 2011) and have been used to make predictions of the degree and stage of soil genesis (Durn et al., 2001; Igwe et al., 2001; Osodeke et al., 2005; Kefas et al., 2020). For instance, phosphorus is barely available in highly weathered tropical soils (Igwe, 2001) while high Ca availability may result in low solubility of manganese (Troeh and Thompson, 1993). The influence of the oxides and hydroxides of Fe-Mn on soil physical as well as chemical properties cannot be unattended in studies related to agricultural soils.

Agricultural production in the Nigerian northern guinea savanna is focused on crop and livestock production. Crop production in the area is dominated by cereals (millet, sorghum, maize and wheat) and legume (cowpea, groundnut and soybean) production (Ajeigbe et al., 2010; Foli, 2012). Though livestock is important in the farming system of the area (Smith et al., 1997), it is often integrated with crops (Foli, 2012) as both have reciprocal benefits. Importantly, farmers in the region combine organic and inorganic inputs as well as intercrop cereal-legume mixtures to consciously manage and improve soil fertility status (Harris, 1998., Hoffmann and Gerling, 2001). The need for a robust soil data base has necessitated the present study. Earlier, Raji et al. (2000), Igwe (2001), and Ibia (2002) emphasized the forms of oxides in northwest Nigeria, flood plains of Niger, and southeast Nigeria, respectively. The present study goes beyond pedogenesis to assessing the influence of the forms of Fe and Mn on soil physical and chemical properties in the northern guinea savanna of Nigeria.

2.0 Materials and methods

2.1 Location, geology and climate of the study area

The study was conducted in Taraba State (6°30' and 9°30' N; 9°00' and 12°00' E), north eastern Nigeria. The State has a total land area of 60,291.8 km². Bauchi and Gombe states are located in the north, while Adamawa is in the east of Taraba state. To the south is the Republic of Cameroun, while Benue, Nasarawa and Plateau states are in the western axis. The geology of the study area is undifferentiated Basement Complex rocks with the occurrence of rocks identified as Precambrian granitic, migmatite gneisses and mica-schist with outcrops of the rocks occurring at intervals (Bawden, 1972).

The study area is characterized by tropical climate with distinct wet and dry seasons. The wet and dry seasons last for 5 and 7 months (Fig. 2), respectively with a mean annual rainfall which ranges from 800 mm in the northern part of the state to over 2000 mm in the southern part. Precipitation is lowest in January with an average of 0 mm, while in August, the most precipitation falls with an average of 217 mm. Mean annual temperature is 34 °C and varies in mean monthly values between 28.4 °C in the coolest month of December and 37 °C in the hottest month of March (NIMET, 2009).

Taraba State is characterized by three dominant vegetational zones. The guinea savanna (study area) is found in the northern part of the State. Sub-sudan vegetation is characterized by short grasses with a few short trees. The Mambila plateau area is uniquely marked by a semitemperate climate with luxuriant pasture and short trees. 2.2 Field and laboratory studies

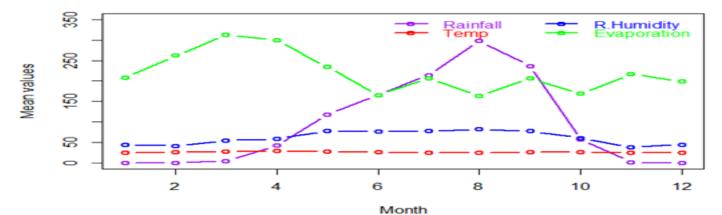


Fig. 1: Climatic data of the study area (1998-2017) Source: Taraba State Water Board

The sites for the study were identified through reconnaissance visits using the geological map of Taraba State obtained from the Nigerian Geological Survey Agency. Soils on mica-schist were identified and selected because of their vastness and agricultural value. The contour map of the selected areas was produced to aid slope classification. Three soil profile pits were sited at crestal position of the lithology in order to obtain a true to type soil representative. It was dug, described and sampled for laboratory studies.

Particle size distribution was determined by the Bouyoucos hydrometer method with sodium hexametaphosphate acting as dispersing agent (Soil Survey Staff, 2014). Soil pH was determined using a ratio of 1:2.5 soil: liquid in 0.1 N KCl₂ solution with the aid of glass electrode pH meter(Udo et al., 2009). Organic carbon was determined by the Walkley and Black wet oxidation method and total N by macro Kjeldahl digestion method as modified by Udo et al. (2009). Bray 1 method was used to determine available phosphorus while exchangeable bases (Ca, Mg, K, and Na) were determined by neutral NH₄OAc displacement method and read through by atomic absorption spectrophotometer as described by Udo et al. (2009). Cation exchange capacity was determined by 1 N NH₄OAc at pH 7 while base saturation was calculated by expressing the sum of exchangeable bases as a percentage of the CEC at pH 7. Dithionite and oxalate forms of iron and manganese were determined by the method of Mehra and Jackson (1960) as modified by Udo et al. (2009). Saturated hydraulic conductivity (Ksat) was determined by the constant head method using Eijkelkamp laboratory permeameteras described by Youngs (2001). Bulk density was determined by core method as described by Blake and Hartge, (1986) while total porosity (TP) was computed from bulk density (Bd) using the equation below (assumed particle density p_s

$$= 2.65 \text{ kg/m}^3$$
): $TP = \left(1 - \frac{Bd}{Pg}\right) x \ 100$

Where TP = total porosity, Bd = bulk density, Ps = particle density.

2.3 Data analysis

Data generated from the laboratory analyses were subjected to statistical analysis using R statistical package.

3.0 Results and Discusion

The physical and chemical properties of the soils are presented in Tables 1-3.

The study area was characterized by deep (>100 cm) to very deep (>150 cm) soils (Table 1) indicating a soil of high volume that may provide ample root zone and support greater capacities to store plant nutrients and water. The low content of clay (Table 1) and OM (Table 3) however, will not facilitate the depth advantage for optimum agricultural use. The depth property also indicates a soil that had strong profile development and highly weathered as buttressed by the high content of free Fe - 2518 mgkg⁻¹ and free Mn - 144.96 mgkg⁻¹ (Table 6). The soil distribution cuts across crestal to lower slope positions. The soils had loamy sand surface soils underlain by sandy loam and loamy sand implying a light textured soil. The lighttextured soil was associated to the granitic origin of the lithology. The dominance of sand fraction in a basement complex soils have been reported by other researchers; Ande, 2010; Maniyunda *et al.*, 2014; Olatunji *et al.*, 2015; Shobayo *et al.* 2019.

The pyrophosphate extractable iron (Fe_p) and manganese (Mn_p) was the lowest fraction of the forms of iron (Fe_p: mean – 1191.90 mgkg⁻¹, Fe_{ox}: mean – 1267.30 mgkg⁻¹, Fe_d: mean – 2459.00 mgkg⁻¹) and manganese (Mn_p: mean – 56.17 mgkg⁻¹, Mn_{ox}: mean – 94.87 mgkg⁻¹, Mn_d: mean – 150.30 mgkg⁻¹) oxides examined (Table 7) in the surface soil on soils on mica-schist. Similarly, subsurface soils mean – 1221.10 mgkg⁻¹, Fe_{ox}: mean – 1321.50 mgkg⁻¹, Fe_d: mean – 2543.00 mgkg⁻¹) and pyrophosphate extractable manganese (Mn_p) (Mn_p: mean – 119.40 mgkg⁻¹, Mn_{ox}: mean – 143.23 mgkg⁻¹, Mn_d: mean – 142.67 mgkg⁻¹) obtained were lowest. Lowest nevertheless, they contributed more to the CEC of the soils as against the amorphous and free oxide forms.

The three forms of iron and manganese oxides contributed positively (though not statistically significant) to the improvement of the soils' bulk density (BD) which was rated moderate except for the Fe_p that recorded a negative correlation (r = -0.3346, P < 0.5) with BD implying that the organic bound iron oxide was so negligible and did not constitute a binding agent. This was further buttressed by its negative correlation (r = -0.0620^{ns} , P< 0.5) with OM. Contrarily, Mn_p, Mn_{ox}, Mn_d, Fe_{ox} and Fe_d did not contribute to the soil's total porosity (TP) except Fe_p. Total porosity of the soil was rated low and was attributed to the high level of free oxides in the soils which had crystallized. Generally, similar observation was noted for the soils' hydraulic conductivity (HC) and water holding capacity (WHC) (rated low). These observations were credited to the granitic origin of the lithology of the study area. Dominance of sand fraction (> 70 gkg⁻¹) in fine earth fraction which was associated to the basement complex coupled with the very high free oxides may render the soils agriculturally unproductive except proper soil management which include improving the physical conditions of the soils, addition of organic manure and incorporation of crop residues as well as serve as a source of N and K, which will raise the fertility of the soils. Soil and water conservation measures must be put in place such as to conserve water on the sandy soils along with other farm management practices that improves soil-water conservation.

The Fe_p and Mn_p distributed irregularly with pedal depth (Table 4) in the three profile pits sited on soils on micaschist. Mean values of surface soils (1191.9 mgkg⁻¹ and 56.17 mgkg⁻¹ – Table 7) were higher than the mean values observed for subsurface soils (1221.1 mgkg⁻¹ and 119.4 mgkg⁻¹ respectively for Fe_p and Mn_p) (Table 8);a trend that was similar to the mean distribution of organic carbon (OC) and organic matter (OM) which contents were higher in the surface soils (Table 7). Similarly, Fe_p and Mn_p were positively correlated (r = 0.031 – Table 5) implying that they were mutually translocated with depth. This observation buttresses the assertion that they are organic bound. However, means (Table 6) of OM, Mn_p (F = 0.088, p = 0.865) and Fe_p (F = 0.031, p = 0.774) did not vary statistically when compared.

Furthermore, a non-coherence pattern was observed between the Fe_p and OM/OC and Mn_p and OM/OC as they were negatively correlated (r = -0.062, r = -0.065 and r = -0.104, r = -0.103 respectively) implying a reduced pedogenic internal transformational process within the surface horizons. Since the content of OM was low due to sparse

	Profile	Hori-				Fine	Coarse	Textural class	Bulk densi-	Total porosi-	Hy- draulic	
Geology	name	zon	Depth	Clay	Silt	sand	sand		ty	, ty	С	WHC
Soils on Mica-	Profile pit	:1					Lat. 08	4641.2 N Long	g. 011º 16 0	.9 S		
Schist	BDCP1	Ap						Loamy				
			0 - 20	10	9	39	42	sand	1.82	31.32	6.83	23.1
	BDCP1	Btv						Sandy				
			20 - 81	18	7	37	38	loam	1.53	42.26	8.08	30.57
	BDCP1	Bt						Sandy				
			81 - 128	14	7	37	42	loam	1.85	29.81	5.05	23.5
	BDCP1	CCv						Sandy				
			128 - 175	12	7	30	51	loam	1.74	34.34	10.1	22.21
	Profile pit							⁰ 46 [°] 14.2" NLong				
	BDCP2	Ар	0 - 35	8	13	41	38		1.54	41.13	10.61	26.14
	BDCP2	Btv	35 - 106	8	5	40	47		1.85	30.19	14.14	19.93
	BDCP2	CBtv	106 - 173	8	19	44	29		1.84	30.57	8.92	15.1
	Profile pit	3					Lat. 08	46 42.1 NLong	g. 011 ⁰ 16 0	2.5"S		
	BDUSP	Ар						-	-			
	1	-	0 - 12	12	7	37	44		1.47	44.53	3.54	24.43
	BDUSP	CB										
	1		12 - 62	8	7	30	55		1.59	40	5.05	23.47
	BDUSP	С										
	1		62 - 126	8	5	35	52		1.79	32.45	4.20	19.42

Table 2: Soil chemical properties of the study area

Geology	Profile	Horizon		pH_H2							
	name		Depth	0 -	pH_KCl	EA	Na ⁺	\mathbf{K}^{+}	Ca ²⁺	Mg ²⁺	TEB
Soils on Mica-Schist	Profile pit 1	1				Lat. 08	⁰ 46 [:] 41.2" NLor	ıg. 011° 16'0	.9 S		
	BDCP1	Ар	0 - 20	6.2	5.6	1.4	0.02	0.05	1.8	0.6	2.47
	BDCP1	Btv	20 - 81	5.8	4.7	2	0.02	0.05	2.2	1.0	3.27
	BDCP1	Bt	81 - 128	6.6	5.3	1.4	0.02	0.05	2	0.8	2.87
	BDCP1	CCv	128 - 175	6.7	5.4	1.2	0.01	0.005	1.8	0.8	2.615
	Profile pit 2	2				Lat. 08	⁰ 46 [¦] 14.2"NLor	ng. 011 ⁰ 16 0	.9' S		
	BDCP2	Ар	0 - 35	6.1	5.1	2.2	0.04	0.09	1.6	1.2	2.93
	BDCP2	Btv	35 - 106	6.9	5.7	1.2	0.006	0.01	1.6	1.8	3.416
	BDCP2	CBtv	106 - 173	7.1	6.1	1.2	0.006	0.01	0.8	1.8	2.616
	Profile pit 3	3				Lat. 08	⁰ 46 [†] 42.1" NLor	ng. 011 ⁰ 16 0	2.5"S		
	BDUSP1	Ap	0 - 12	6.9	6.2	1	0.05	0.09	4.6	0.8	5.54
	BDUSP1	ĊB	12 - 62	6.5	5.3	1.4	0.008	0.01	2	1.4	3.418
	BDUSP1	С	62 - 126	6.9	6.2	1.2	0.001	0.005	1.2	1.2	2.406

vegetation that characterized the study area (guinea savanna), it can be surmised that pH (Table 2) cast an immobilization effect on Mn_p co-translocation with OM/OC as the organic bound sesquioxides were positively correlated with pH in water (r = 0.130, p = 0.717) and KCl (r = 0.031, p = 0.931) and also contributed to the soil's acidity. The soils varied in their chemical reaction from moderately acidic (5.8) to neutral (7.1) whichpossibly could account for the high content of Mg is the soils. Organic bound manganese (Mn_p) correlated positively (Table 5) with the amorphous (Mn_{ox}) and free (Mn_d) manganese oxides forms indicating an increase in any form will have a concomitant pedogenic effect on the other.

Mean values of Mn_{ox} (94.87 mgkg⁻¹) and Fe_{ox} (1267.30 mgkg⁻¹) at the surface soils shows that the sequence of their distribution is greater than Mn_p and Fe_p respectively (i.e., $Mn_p \le Mn_{ox}$ and $Fe_p \le Fe_{ox}$). Generally, the contents of Fe were greater than those of Mn (Table 4) and was attributed to the parent material mineralogical composition which is richer in Fe; especially those contributed by mica. Therefore, it can be opined that Fe is the major contributor of the amorphous form. The Fe_{ox} correlated negatively (r = -0.444, P < 0.5) with Fe_p implying that there was a shift towards inorganic pedogenic phase, however, a positive correlation obtained between Mn_{ox} and Mn_p is an indication of reciprocal transformational process between the oxide forms at the surface horizons. Also, a strong significant difference (F =187.6, $p = 7.777^{***}$ between their means (Table 6) (i.e., Mn_{ox} and Mn_p) buttressed their reciprocal interaction. The high content of Fe in the amorphous form might not have translated to any beneficial pedogenic effect on cation exchange capacity and water holding capacity of the soils as it could not be unconnected to its inverse correlation with clay, water holding capacity and CEC (Table 5). But it perhaps had facilitated the adsorption/retention of N and P.

Contents of Mn_d and Fe_d were higher than those of Mn_{ox} and Feox respectively in their corresponding horizons. Mean surface soil content of Fe_d (2459.00 mgkg⁻¹) was lower than the computed mean for Fe_d (2543.00 mgkg⁻¹) at the subsurface soils. The differential may be attributed to tillage that continually disturb the surface soils and subsequently retard the build up at the surface. This form of Fe is surmised not to be part of the silicate structure but present in soils as discrete bodies. Its distribution pattern shows increase with pedal depth suggesting an illuvial accumulation and at the subsoils, crystallinity might be improved. This phenomenon may not be best for agricultural land-use, because plinthization may be initiated. Again, the high value recorded may account for the soils being highly developed and approaching senility. High iron oxide values may indicate the presence of iron oxide either crystalline such as hematite or amorphous in an appreciable percentage (Sombroek and Zonneveld, 1971).

Thomas *et al.* (2019) submitted that free oxides in soils usually have distinct electrochemical properties that generate CEC as a consequence of the adsorption of proton and hydroxyl ions providing structural cementation in the soil. Only the free iron oxide was observed to contribute to the soils' CEC (r = 0.1537, P < 0.5) and was not significant (F = 0.194, p = 0.672); however, this study shows that the free manga-

Table 3 cont.: Soil chemical properties of the study area

	Profile									
Geology	name	Horizon	Depth	CEC	ECEC	BS	OC	OM	Ν	Р
Soils on Mica-Schist	Profile pit 1				Lat. 08°40	5 41.2 N		Long. (011 ⁰ 16 0.9 S	
	BDCP1	Ap	0 - 20	10	3.87	24.7	0.375	0.647	0.098	0.93
	BDCP1	Btv	20 - 81	16.8	5.27	19.46	0.375	0.647	0.056	0.92
	BDCP1	Bt	81 - 128	14	4.27	18.28	0.375	0.647	0.028	0.93
	BDCP1	CCv	128 - 175	15.2	3.815	17.14	0.075	0.129	0.056	0.98
	Profile pit 2				Lat. 08 ⁰ 40	5 14.2 N		Long. ($011^0 160.9$ S	
	BDCP2	Ар	0 - 35	9.2	5.13	31.85	0.781	1.346	0.308	6.53
	BDCP2	Btv	35 - 106	10	4.616	34.16	0.164	0.283	0.14	1.87
	BDCP2	CBtv	106 - 173	7.2	3.816	36.33	0.164	0.283	0.224	1.87
	Profile pit 3				Lat. 08 ⁰ 40	5 42.1" N		Long. (011 ⁰ 16 02.5 S	5
	BDUSP1	Ар	0 - 12	16.4	6.54	33.78	1.013	1.746	0.084	0.93
	BDUSP1	ĊB	12 - 62	19.6	4.818	17.44	0.263	0.463	0.084	0.94
	BDUSP1	С	62 - 126	9.6	3.606	25.06	0.075	0.129	0.07	0.93

Table 4: Sesquioxide properties of the study area

	Profile									Mn _o /	
Geology	name	Horizon	Depth	Mn_d	Fe_d	Mn_ox	Fe_ox	Mn_p	Fe_p	Mn _d	Fe _o /Fe _d
Soils on Mica-Schist	Profile pit	1				Lat. 08 ⁰ 4	6 41.2 N		Long	, 011 ⁰ 16 0.	9 S
	BDCP1	Ар	0 - 20	237.1	2063.55	131.1	773.6	106	1290	0.55	0.37
	BDCP1	Btv	20 - 81	110.6	2793.65	66	1206.2	44.6	1587.5	0.6	0.43
	BDCP1	Bt	81 - 128	95.15	2666.25	515	1384.7	419.8	1281.6	5.4	0.52
	BDCP1	CCv	128 - 175	131.4	3047.7	70	1543.2	61.4	1504.5	0.53	0.51
	Profile pit 2	2				Lat. 08°4	6 [¦] 14.2"N		Lon	g. 011 ⁰ 16 0	.9' S
	BDCP2	Ap	0-35	82.4	2266.45	83.5	1485.2	1.1	781.3	1.01	0.66
	BDCP2	Btv	35 - 106	131.1	3089.05	62.7	2312.7	68.4	776.4	0.48	0.75
	BDCP2	CBtv	106 - 173	52.05	2977.2	29	1981.4	23.1	995.8	0.56	0.67
	Profile pit 3	3				Lat. 08°4	6 [¦] 42.1" N		Lon	g. 011 ⁰ 16 0	2.5 S
	BDUSP1	Ap	0 - 12	151.65	2473.05	76	1201	75.7	1272.1	0.5	0.49
	BDUSP1	CB	12 - 62	56.1	2377.1	22.1	683.2	34	1693.9	0.39	0.29
	BDUSP1	С	62 - 126	402.05	1421.55	231.8	481.3	170.3	940.3	0.58	0.34

nese oxide (Mn_d) did not contribute to the soils' CEC as increase in the Mn_d led to decreased CEC (r = -0.2844, p = 0.4258) but CEC was partly contributed by clay (r = 0.5197, P < 0.5) and OM (r = 0.1863, P < 0.5). The free oxides i.e. Mn_d and Fe_d also did not improve the soils' water holding capacity implying that they were not clay-sized except Fe_d that was somewhat clay-sized. It can also be surmised that the high content of the free oxides was crystallized and therefore inactive.

Contrastively, mean surface soil contents (150.30 mgkg⁻¹) of Mn_d was lower than the subsurface soils' average (142.67) mgkg⁻¹). This is an indication that Mn-oxide forms minimal fraction of the free forms in the soils formed on the micaschist therefore, poses less crystallization threat that lowers pedogenesis. The correlation studies show that the fine earth fractions (clay, silt and fine sand) did not influence the formation and distribution of Mn_d. Even at lower presence, the Mn_d had resultant inhibitory effect on exchangeable bases i.e. Ca, Mg, K, Na and other macronutrients such as N and P (Table 5). It can be surmised that the content of Mn_d had contributed to the acidity (Table 2) of the soil which could temporarily heighten immobilization at the period field study was carried out (Figure 2). Ratios of oxalate extractable and dithionite extractable were measured to further determine the pedogenic development i.e. recrystallization in soils of the study area. The distribution with depth was irregular for both Mn_0/Mn_d and Fe_0/Fe_d (Table 4). The surface soils recorded mean ratios of 0.70 and 0.51 respectively for Mn_o/Mn_d and Fe_o/Fe_d (Table 7) and the corresponding subsurface mean ratios were 1.22 and 0.50 (Table 8). Increased mean ratio of Mn_o/Mn_d observed in the subsurface soils is suggestive of preponderant recrystallization at the surface soils. However, the similar Fe_o/Fe_d mean ratios observed for both surface and subsurface soils imply similarity in recrystallization process taken place. Maniyunda *et al.* (2014) submitted that values ranging between 0.1 and 0.5 are of moderate pedogenetic development. The mean ratios observed were between 0.5 and 1.06, therefore the soils have weathered appreciably. Sombroek and Zonneveld (1971) associated sesquioxides ratios to possible clay-sized minerals present in soils. They submitted that ratios between 2.0 and 3.0 suggest the presence of both montmorillonite/illite and kaolinite; 1.6 - 2.0 suggest the predominance of kaolinite. Values below 1.6 indicate the presence of considerable percentages of gibbsite or aluminium oxides. However, their analysis was subjected to the clay fraction solely.

4.0 Conclusion

It was concluded from the study that free iron oxide was the dominant form of oxide. The forms of oxide increased in the order Mn_p > Mn_{ox} > Mn_d > Fe_p > Fe_{ox} > Fe_d with percentage distribution of 1.86, 2.38, 2.68, 22.41, 24.13 and 46.56 respectively. Generally, the three forms of iron and manganese oxides did not significantly influence the soils' physical and chemical properties as the results revealed non statistically significant interactions between the oxide forms and other soil parameters. The dominant oxide forms (i.e free form) were relatively inactive therefore, did not influence total porosity, hydraulic conductivity and water holding capacity except bulk density. Organic form influenced more to the cation exchange capacity more than the active form (amorphous form). Ratios of oxalate extractable and dithionite extractable indicated that the soils are highly weathered. Because they are highly weathered, the soils might lose much of its nutrients due to excessive leaching (low HD and WHC). Thus, corroborating the soils' general low (exchangeable bases, OC, OM, N and P) fertility status as presented in the study analytical data.

Table 5: Correlation results

Table 6: Summary of surface Clay	Table 6: Summary of surface/subsurface soils on mica-schist Jay Silt	Fine sand	CEC	ECEC
Min. : 8.0	Min. : 5.0	Min. :30.00	Min. : 7.2	Min. :3.606
1st Qu.: 8.0	1st Qu.: 7.0	1st Qu.:35.50	1st Qu.: 9.7	1st Qu.:3.829
Median : 9.0	Median : 7.0	Median :37.00	Median :12.0	Median :4.443
Mean :10.6	Mean : 8.6	Mean :37.00	Mean :12.8	C/C.1: Mean :4:0.0
5rd Qu.:12.0 May -18.0	510 Uu.: 8.5 May 19.0	C/.92:39.10 May44.00	57d Qu.:16.1 May 1966	510 U.C. D2 May 76 540
114A 10.0	1714417.0	1414A	1714A. 17.0	
Coarse sand	Bulk density	Total porosity	Hydraulic C	WHC
Min. :29.0	Min. :1.470	Min. :29.81	Min. : 3.540	Min. :15.10
1st Qu.:39.0	1st Qu.:1.552	1st Qu.:30.76	1st Qu.: 5.050	1st Qu.:20.50
Median :43.0	Median :1.765	Median :33.40	Median : 7.455	Median :23.29
Mean :43.8	Mean :1.702	Mean :35.66	Mean : 7.652	Mean :22.79
3rd Qu.:50.0	3rd Qu.:1.835	3rd Qu.:40.85	3rd Qu.: 9.805	3rd Qu.:24.20
Max. :55.0	Max. :1.850	Max. :44.53	Max. :14.140	Max. :30.57
н нао			MO	NT
	Min 170		UM:	
104 O.UC. 375	IMIII4. /0 1 of Ox: 520	124 0.0. 0.164	MIII0.129 14 Oct -0. 303	MIII. :0.0260 1 of On: 0.0505
151 Qu 0.273 Median :6.650	151 Qu.J.00 Median 5 50	151 Qu.:0.104 Median :0 310	151 Qu0.203 Median -0 555	15t Qu. 0.0233 Median -0.0840
Mediai .0.000 Mean .6.570	Mean -5 56	Vicutation 0.366	Mean -0.632	Mean -0.1148
3rd Ou :6 900	3rd Ou :6 00	3rd Ou -0.375	3rd Oh -0 647	3rd Ou :0 1295
Max. :7.100	Max. :6.20	Max. :1.013	Max. :1.746	Max. :0.3080
	K	Ca	Mg	
Min. :0.0010	Min. :0.005	Min. :0.80	Min. :0.60	Min. :2.406
151 Qu.:U.0005	1St Qu.:0.010	Ist Qu.:1.60	1 ST QU.: 0.80	C10.2D 1S1
Median :0.0120 Magay -0.0181	Median :0.030	Medual 1.50 Mean -1 06	Median 1110	Median 2.900 Magn -2.155
MEAL .0.0101 3rd On -0.0200	MEALL .0.037 3rd On .0.050	2rd On -2 00	Mcall .1.14 3rd On 1 35	2rd Oi: 2380
Max. :0.0500	Max. :0.090	Max. :4.60	Max. :1.80	Max. :5.540
	EA		Mn_p	Mn_ox
Min. :17.14	Min. :1.00	Min. :0.920	Min. : 1.10	Min. : 22.10
1st Qu.:18.2/	1st Qu.:1.20 Modion: 1.20	1st Qu.:0.930 Medice:0.025	1 St Qu.: 50.05 Madian : 51.00	1st Qu.: 65.52 Modion - 77.00
Mean -25.82	Mean ·1 47	Mean -1 683	Mean 104.30	Median - 128-72
3rd On -33 30	3rd On 1 40	3rd On ·1 647	3rd On - 98 42	3rd On 119 20
Max. :36.33	Max. :2.20	Max. :6.530	Max. :419.80	Max. :515.00
	2 2 2	ц,	ت ل	$M_{22} \sim M_{22}$
0 UM Min - 52 05	rep Min : 776.4	re_{OX} Nin · 181.2	re_d Min 1773	N4:
1st Ou : 85.59	1 st On : 954 2	1st Ou : 880.5	1 st Ou - 2294	1 st On :0 5075
Median :120.85	Median :1276.8	Median :1295.5	Median :2570	Median :0.5550
Mean :144.96	Mean :1212.3	Mean :1305.2	Mean :2518	Mean :1.0600
	3rd Qu.:1450.9	3rd Qu.:1528.7	3rd Qu.:2931	
102.00 SULAN	4.6401. XIAN	Max. :2312.1	MIAX. : 3089	MIAX. :
Fe-o_Fe-d				
Min. :0.290				
1st Qu.:0.385				
Meulall .0.500 Mean -0.503				
3rd Qu.:0.625				
Max. :0.750				

Table 7: Summary of su	Table 7: Summary of surface soils on mica-schist					
Clay	Silt	Fine sand	Coarse sand	Bulk density	Total porosity	
Min. : 8	Min. : 7.000	Min. :30.00	Min. :38.00	Min. :1.54	Min. :31.32	
1st Qu.: 9	1st Qu.: 8.000	1st Qu.:34.50	1st Qu.:40.00	1st Qu.:1.64	1st Qu.:32.83	
Median :10	Median : 9.000	Median :39.00	Median :42.00	Median :1.74	Median :34.34	
Mean :10	Mean : 9.667	Mean :36.67	Mean :43.67	Mean :1.70	Mean :35.60	
3rd Qu.:11	3rd Qu.:11.000	3rd Qu.:40.00	3rd Qu.:46.50	3rd Qu.:1.78	3rd Qu.:37.73	
Max. :12	Max. :13.000	Max. :41.00	Max. :51.00	Max. :1.82	Max. :41.13	
Hvdraulic C	WHC	nH H2O	nH KCl	00	MO	
Min · 6 830	Min -22,21	Min -6 100	Min ·5 100	Min -0.0750	Min -0.1290	
1st Ou.: 8.465	1st Ou. :22.66	1st Ou.:6.150	1st Ou. 5.250	1st Ou :0.2250	1st Ou. 0.3880	
Median :10.100	Median :23.10	Median :6.200	Median :5.400	Median :0.3750	Median :0.6470	
Mean : 9.180	Mean :23.82	Mean :6.333	Mean :5.367	Mean :0.4103	Mean :0.7073	
3rd Qu.:10.355	3rd Qu.:24.62	3rd Qu.:6.450	3rd Qu.:5.500	3rd Qu.:0.5780	3rd Qu.:0.9965	
Max. :10.610	Max. :26.14	Max. :6.700	Max. :5.600	Max. :0.7810	Max. :1.3460	
N.	NL	2	Ç			
				INIB 		
Min. :0.056	Min. :0.01000	Min. :0.00500	Min. :1.600	Min. :0.6000	Min. : 9.20	
1st Qu.:0.0//	1st Qu.:0.01500	1 st Qu.:0.02/50	Ist Qu.:1./00	1st Qu.:0./000	I st Qu.: 9.60	
Median :0.098	Median :0.02000		Median :1.800	Median :0.8000	Median :10.00	
Mean :0.154	Mean :0.02333	Mean :0.04833	Mean :1.733	Mean :0.8667	Mean :11.47	
3rd Qu.:0.203	3rd Qu.:0.03000	3rd Qu.:0.07000	3rd Qu.:1.800	3rd Qu.:1.0000	3rd Qu.:12.60	
Max. :0.308	Max. :0.04000	Max. :0.09000	Max. :1.800	Max. :1.2000	Max. :15.20	
TEB	ECEC	BS	EA	AvP	Mn p	
Min. :2.470	Min. :3.815	Min. :17.14	Min. :1.2	Min. :0.930	Min. : 1.10	
1st Qu.:2.542	1 st Qu.:3.842	1st Qu.:20.92	1st Qu.:1.3	1st Qu.:0.955	1st Qu.: 31.25	
Median :2.615	Median :3.870	Median :24.70	Median :1.4	Median :0.980	Median : 61.40	
Mean :2.672	Mean :4.272	Mean :24.56	Mean :1.6	Mean :2.813	Mean : 56.17	
3rd Qu.:2.772	3rd Qu.:4.500	3rd Qu.:28.27	3rd Qu.:1.8	3rd Qu.:3.755	3rd Qu.: 83.70	
Max. :2.930	Max. :5.130	Max. :31.85	Max. :2.2	Max. :6.530	Max. :106.00	
Mn ox	Mn d	Fe p	Fe ox	Fe d	Mn-o Mn-d	
Min. : 70.00	Min. : 82.4	Min. : 781.3	Min. : 773.6	Min. :2064	Min. :0.5300	
1st Qu.: 76.75	1st Qu.:106.9	1st Qu.:1035.7	1st Qu.:1129.4	1st Qu.:2165	1st Qu.:0.5400	
Median : 83.50	Median :131.4	Median :1290.0	Median :1485.2	Median :2266	Median :0.5500	
Mean : 94.87	Mean :150.3	Mean :1191.9	Mean :1267.3	Mean :2459	Mean :0.6967	
3rd Qu.:107.30	3rd Qu.:184.2	3rd Qu.:1397.2	3rd Qu.:1514.2	3rd Qu.:2657	3rd Qu.:0.7800	
Max. :131.10	Max. :237.1	Max. :1504.5	Max. :1543.2	Max. :3048	Max. :1.0100	
- - -						
Fe-0_Fe-d Min -0.2700						
1 et Ou - 0.2 /00						
1st Qu0.4400 Median :0.5100						
Mean :0.5133						
3rd Qu.:0.5850						
Max. :0.6600						

Clay	Silt	Fine sand	Coarse sand	Bulk density	Total porosity	
Min. : 8.00	Min. : 5.000	Min. :30.00	Min. :29.00	Min. :1.470	Min. :29.81	
1st Qu.: 8.00	1st Qu.: 6.000	1st Qu.:36.00	1st Qu.:40.00	1st Qu.:1.560	1st Qu.:30.38	
Median : 8.00	Median : 7.000	Median :37.00	Median :44.00	Median :1.790	Median :32.45	
Mean :10.86	Mean : 8.143	Mean :37.14	Mean :43.86	Mean :1.703	Mean :35.69	
3rd Qu.:13.00	3rd Qu.: 7.000	3rd Qu.:38.50	3rd Qu.:49.50	3rd Qu.:1.845	3rd Qu.:41.13	
Max. :18.00	Max. :19.000	Max. :44.00	Max. :55.00	Max. :1.850	Max. :44.53	
Hvdraulic C	WHC	pH H2O	pH KCl	00	OM	
Min : 3.540	Min 15.10	Min :5 800	Min 4 700	Min :0.075	Min :0.1290	
1st On · 4 625	1st On 1968	1st On .6 550	1st On -5 300	1 st Ou -0 164	1st On ·0 2830	
Median : 5.050	Median :23.47	Median :6.900	Median :5.700	Median :0.263	Median :0.4630	
Mean : 6.997	Mean :22.35	Mean :6.671	Mean :5.643	Mean :0.347	Mean :0.5997	
3rd Qu.: 8.500	3rd Qu.:23.96	3rd Qu. :6.900	3rd Qu.:6.150	3rd Qu.:0.375	3rd Qu.:0.6470	
Max. :14.140	Max. :30.57	Max. :7.100	Max. :6.200	Max. :1.013	Max. :1.7460	
NL	Na	K	Č	Mg	UEU.	
Min -0.028	Min -0.00100	Min -0.00500	0 800 Min -0 800	Min -0 800	Min · 7 20	
1st Ou.:0.063	1st Ou. 0.00600	1st Ou : 0.01000	1st Ou. 1 400	1st Ou :0.900	1st Ou.: 9.80	
Median :0.084	Median :0.00800	Median :0.01000	Median :2.000	Median :1.200	Median :14.00	
Mean :0.098	Mean :0.01586	Mean :0.03214	Mean :2.057	Mean :1.257	Mean :13.37	
3rd Qu.:0.112	3rd Qu.:0.02000	3rd Qu.:0.05000	3rd Qu.:2.100	3rd Qu.:1.600	3rd Qu.:16.60	
Max. :0.224	Max. :0.05000	Max. :0.09000	Max. :4.600	Max. :1.800	Max. :19.60	
TEB	ECEC	BS	EA	AvP	Mn p	
Min -7 406	Min -3 606	Min 17 44	Min -1 000	Min -0.920	Min - 23.1	
1st Qu.:2.743	1 st Qu.:4.043	1st Qu.:18.87	1st Qu.: 1.200	1st Qu.:0.930	1st Qu.: 39.3	
Median :3.270	Median :4.616	Median :25.06	Median :1.200	Median :0.930	Median : 68.4	
Mean :3.362	Mean :4.705	Mean :26.36	Mean :1.343	Mean :1.199	Mean :119.4	
3rd Qu.:3.417	3rd Qu.:5.044	3rd Qu.:33.97	3rd Qu.:1.400	3rd Qu.:1.405	3rd Qu.:123.0	
Max. :5.540	Max. :6.540	Max. :36.33	Max. :2.000	Max. :1.870	Max. :419.8	
Mn ox	Mn d	Fe p	Fe ox	Fe d	Mn-o Mn-d	
Min. : 22.10	Min. : 52.05	Min. : 776.4	Min. :481.3	Min. :1422	Min. :0.390	
1st Qu.: 45.85	1st Qu.: 75.62	1st Qu.: 968.0	1st Qu.: 942.1	1 st Qu.:2425	1 st Qu.:0.490	
Median : 66.00	Median :110.60	Median :1272.1	Median :1206.2	Median :2666	Median :0.560	
Mean :143.23	Mean :142.67	Mean :1221.1	Mean :1321.5	Mean :2543	Mean :1.216	
3rd Qu.:153.90	3rd Qu.:141.38	3rd Qu.:1434.5	3rd Qu.:1683.0	3rd Qu.:2885	3rd Qu.:0.590	
Max. :515.00	Max. :402.05	Max. :1693.9	Max. :2312.7	Max. :3089	Max. :5.400	
Ка о Ка д						
Min. :0.2900						
1st Qu.:0.3850						
Median :0.4900						
Mean :0.4986						
3rd Qu.:0.5950						
Max. :0./200						

33

Influence of forms of iron and manganese oxides on the physical and chemical properties of soils formed over mica-schist in a Northern Guinea Savanna, Nigeria

Ibia, T.O. (2002). Forms of Fe and Al in soil profiles of

References

- Adeoye, K.B. and Mohamed-Saleem, M.A. (1990). Comparison of effects of tillage methods on soil physical properties and yield of maize and stylo in a degraded ferruginous tropical soil. *Soil and Tillage Research* 18: 63-72
- Adewale, B.D. and Odoh, N.C. (2017). Northern Guinea Savanna Edaphic Properties andNutrients Combination Impact on Maize Mycorrhizal Colonization and Biomass Yield. *Applied Tropical Agriculture*,22 (1): 103-110
- Ajeigbe, H.A., B. B. Singh, et al. (2010). Improved cowpea-cereal cropping systems: cerealdouble cowpea system for northern Guinea savanna zone. IITA. Ibadan, IITA: 17.
- Ande, O.T. (2010). Morphogenetic characterization of soils formed from basement complex rock in the humid tropical rainforest of Nigeria. *Journal of Soil Science and Environmental Management*, 6:122-126. Retrieved online at http://www.academicjournals.org/ JSSEM
- Babalola, T.S., Fasina, A.S., Kadiri, W.O.J., Ibitoye-Ayeni, N.K. and Omonile, T. (2019). Variation of Soil Morphological Properties along a Lithosequence on Basement Complex Geology of Nigeria. *FULafia Journal of Science and Technology*, 5 (1): 55-65.
- Bawden, M.G. (1972). The Land system, land resources study No9, LRD. Tolworth.
- Blake, G.R. and Hartge, K.H. (1986). Bulk density. p. 363
 -382. In A. Klute (ed.) Methods of Soil Analysis. Part
 1.Physical and Mineralogical Methods.2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- Durn, G., Slovenec, D. and Covic, M. (2001). Distribution of iron and manganese in Terra Rossa from Istria and its genetic implications. *Geologia Croatica* 54(1):27-36.
- Esu, I.E. (2010): Soil characterization, classification and survey. HEBN Publishers, Plc, Ibadan,Nigeria. 73-99.
- Esu, I.E. and Ojanuga, A.G. (1985). Morphological physical and chemical Characteristics of Alfisols in the Kaduna Area of Nigeria. *Samaru Journal of Agricultural Research*, 31: 39-49.
- FAO (1978). Report of the Agro-ecological zones Project.Vol. 1. Methodology and results forAfrica. Rome.Food and Agriculture Organization of the UN.
- FAO (2003). Production year handbook.
- Foli, S. (2012). Farm characterisations in the southern and northern Guinea savannah zones ofNigeria: *Identification of niches for grain legume technologies*. MSc thesis. Plant Production Systems, Wageningen University, Pp. 67.
- Harris, F.M.A. (1998). Farm-level assessment of the nutrient balance in northern Nigeria. *A griculture, Ecosystems and Environment***71**(1-3): 201-214.
- Hoffmann, I. and Gerling, D. (2001). Farmers' management strategies to maintain soil fertilityin a remote area in northwest Nigeria. *Agriculture, Ecosystems and Environment*86(3): 263-275.
- Ibanga, I.J. (2006). Soil studies: The pedological Approach. Maesot Printing and Computers, Calabar, Nigeria.

inland flood plains of South EasternNigeria. Nig. J.

- Igwe§601.Res(2007D).7Free oxide distribution in Niger flood plain soils in relation to their total and available phosphorus. Proceed. Soil Sci. Soc. Nig. pp. 196-201.
- Jagtap, S.S. 1995. Environmental characterization of the moist lowland savanna of Africa. In:Kang, B. T., Akobundu, I. O., Manyong, V. M., Carsky, R. J., Sanginga, N. and Kueneman, E. A. (editors), Moist savannas of Africa: Potentials and constraints for crop production. Proceedings of an IITA/FAO Workshop held from 19-23 September 1994, Cotonou, Republic of Benin, pp. 13-30.
- Jelic, M.Z., Milivojevic, J.Z., Trifunovic, S.R., Dalovic, I.G., Milosev, D.S. and Seremesic, S.I. (2011). Distribution and forms of iron in the Vertisols of Serbia. J. Serbian Chem. Soc. 76(5):781-794.
- Kassam, A.H., Kowal, J., Dagg, M. and Harrison, M.N. (1975). Maize in West Africa and itspotential in the savanna area. *World Crops*, 17: 75-78.
- Kefas, P.K., Ali, S. Ofem, K.I. and Umeugokwe, C.P. (2020). Genesis and classification of soils along a Toposequence in the Teaching and research Farm of Taraba State University. *Global Journal of agricultural sciences* Vol.19,2020:33-43
- Lawal, B.A., Ojanuga, A.G, Tsado, P.A. and Mohammed, A. (2013): Characterization, Classification and Agricultural Potentials of Soils on a Toposequence in Southern Guinea Savanna of Nigeria. *International Journal of Agricultural and Biosystems Engineering* 7 (5).
- Maniyunda L.M. (2012). Pedogenesis of a lithosequence in northern guinea savannah ofKaduna State, Nigeria. Ph.D thesis (unpublished), Ahmadu Bello University, Zaria. 219pp.
- Maniyunda, L.M., Raji, B.A., Odunze, A.C., Malgwi, W.B. and Samndi, A.M. (2014). Forms of iron in soils on basement complex rocks of Kaduna state in Northern Guinea Savanna of Nigeria. *Bayero Journal of Pure and Applied Sciences*, 7(2): 83 – 92. Retrieved (a) http://dx.doi.org/10.4314/bajopas.v7i2.16
- Maniyunda, L.M., Raji, B.A., Odunze, A.C. and Malgwi, W.B. (2015). Forms and content ofsesquioxides in soils on basement complexes of northern Guinea savanna of Nigeria. *Journal of Soil Science and Envi*ronmental Management, 6(6): 148-157.
- Maniyunda, L.M., Raji, B.A. and Gwari, M.G. (2013). Variability of Some Soil Physicochemical Properties on Lithosequence in Funtua, North -Western Nigeria. *International Journal of Science and Research (IJSR)*, 2(9): 174-180.
- Mehra, O.P. and Jackson, M.L. (1960). Iron oxide removal from soils and clays by dithionitecitrate system buffered with sodium bicarbonate. *Clays Clay Minerals* 7:317-327.
- NIMET, 2009. Nigeria meteorological station, Yola international airport.
- Obaje, N.G. (2009). *Geology and mineral resources of Nigeria*. Springer Dordrecht HeidelbergLondon New York. 219p.
- Ogezi, A.E.O. (1977). *Geochemistry and Geochronology* of Basement Rocks fromNorthwestern Nigeria. Unpublished Ph.D. Thesis, University of Leeds.

published Ph.D. Thesis, University of Leeds.

- Ogungbile, A.O., Tabo, R. and Duivenbooden, N.V. (1999). Multiscale characterization ofproduction systems to prioritize research and development in the Sudan Savanna Zone of Nigeria, International Crops Research Institute for the Semi-Arid Tropics.
- Okogun, J.A., Otuyemi, B.T. and Sanginga, N. (2004). Soybean yield determinants and response or rhizobial inoculation in an on-farm trial in the northern Guinea savanna of Nigeria. *West Afr. J. Appl. Ecol.*, 6: 30-39.
- Olaniyan, J.O. (2015). Maize: Panacea of hunger in Nigeria. *African Journal of PlantScience*, 9(3): 155-174.
- Olaniyan, J.O., Ogunkunle, A.O. and Aduloju, M.O. (2011). Response of soil types to fertilizerapplication as conditioned by Precipitation in the Southern Guinea Savanna Ecology of Nigeria In: proceedings of the International Soil Tillage Research Organisation (ISTRO) Symposium held in 21-23 Feburary, University of Ilorin, Nigeria.
- Olatunji, O.O., Oyeyiola, Y. and Oyediran, G.O. (2015). Assessment of dithionite and oxalate extractable iron and aluminium oxides on a landscape on basement complex soil in South-Western Nigeria. *Open Journal* of Soil Science, 5: 266-275.
- Osodeke, V. E., Nwotiti, I. L. and Nuga, B. O. (2005). Sesquioxides distribution along a toposequence in Umudike area of Southeastern Nigeria. *Electr. J. Environ. Agric. Food Chem.* 4(6):1117-1124.
- Raji, B.A., Esu, E.I. and Chude, V.O. (2000). Status and profile distribution of free oxides in Haplustults and Quartzipsamments developed on ancient dunes in NW Nigeria. Sam. J. Agric. Res. 16:41-51.
- Salami, B.T., Okogun, J.A. and Sanginga, N. (2011). Delineation of management zones by classification of soil physico-chemical properties in the Northern Savanna of Nigeria. *African Journal of Agricultural Research*, 6(6): 1572-1579. DOI: 10.5897/AJAR10.573
- Salako, F.K., Tian, G. and Kang, B.T. (2002). Indices of root and canopy growth of leguminous cover crops in the savanna zone of Nigeria. *Tropical Grasslands* 36: 33-46.
- Salako, F.K. (2003). Soil Physical Conditions in Nigerian Savannas and Biomass Production. Lecture given at

the College on Soil Physics Trieste, 3-21 March 2003. Sanford, W.E., Yesufu, H.M. and Ayeni, J.S.O. (1980). Primary Production in the Savanna, Selected Papers from the Man and Biosphere State-of-Knowledge Workshop Sponsored by the Nigerian National Man and Biosphere Committee, U.N.E.S.C.O. and the Kainji Lake Research Institute, Kainji Lake Research Institute.

- Shobayo A.B., Ya'u S.L. and Tarfa, B.D. (2019). Soil Mapping and in Situ Soil Description of Selected Land Area of Funtua, Nigeria. Nigerian Journal of Soil Science 29(1):96-111.
- Soil Survey Staff (2014). Soil taxonomy: A basic system of soil classification for making and interpreting soil survey. Agric. Handbook 432, USDA, Washington DC. Pp 869
- Smith, J.W., Naazie, A. et al. (1997). Integrated croplivestock systems in sub-Saharan Africa: An option or an imperative? *Outlook on Agriculture*26(4): 237-246.
- Sombroek, W. G., and Zonneveld, I. S. (1971). Ancient Dunes Fields and Fluviatile Deposits in the Rima Sokoto River Basin, Soil Survey Paper No.5, Netherland Soil Survey Institute, Wageningen, pp109.
- Thomas, E.Y., Omueti, J. A. I. and Nosakhare, G. E. (2019): Effects of Free Oxides on Potassium Fixation in Some Soils of Southern Nigeria. *Communications in Soil Science and Plant Analysis* 50 (19): 2495 - 2503
- Troeh, F.R. and Thompson, L.M. (1993). Soils and Soil Fertility: Oxford University Press. Book for Soil Scientists.
- Udo, T., Ibia,T.O., Ogunwale, J.A., Ano, A.O. and Esu, I.E., (2009). Manual of soil, plant and water Analyses. Sibon books Ltd, Lagos, Nigeria.
- Usul, M. and Dengiz, O. (2010). Pedological development on four different parent materials. *Anadolu Journal of Agricultural Sciences* 25(S-2): 204-2011
- Youngs, E.G. (2001). Hydraulic conductivity of saturated soils. In; Soil and Environmental Analysis. Smith, K.A. and C.E. Mullins (Eds.). Physical Methods. 2nd Edn. Marcel Decker Inc. NY., pp. 637.